Matchings Extend to Perfect Matchings on Hypercube Networks
نویسندگان
چکیده
In this work, we investigate in the problem of perfect matchings with prescribed matchings in the n-dimensional hypercube network Qn. We obtain the following contributions: For any arbitrary matching with at most n − 1 edges, it can be extended to a perfect matching of Qn for n ≥ 1. Furthermore, for any arbitrary non-forbidden matching with n edges, it also can be extended to a perfect matching of Qn for n ≥ 1. It is shown by J. Fink in 2007 that any arbitrary perfect matching of the n-dimensional hypercube Qn, n ≥ 2, can be extended to a Hamiltonian cycle. Therefore, it leads to a further result that for any arbitrary non-forbidden matching with at most n edges, it can be extended to a Hamiltonian cycle of Qn for n ≥ 2.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملMatchings of quadratic size extend to long cycles in hypercubes
Ruskey and Savage in 1993 asked whether every matching in a hypercube can be extended to a Hamiltonian cycle. A positive answer is known for perfect matchings, but the general case has been resolved only for matchings of linear size. In this paper we show that there is a quadratic function q(n) such that every matching in the n-dimensional hypercube of size at most q(n) may be extended to a cyc...
متن کاملPerfect matchings extend to Hamilton cycles in hypercubes
Kreweras’ conjecture [1] asserts that any perfect matching of the hypercube Qd, d ≥ 2, can be extended to a Hamilton cycle. We prove this conjecture.
متن کاملMatching graphs of Hypercubes and Complete Bipartite Graphs
Kreweras’ conjecture [1] asserts that every perfect matching of the hypercube Qd can be extended to a Hamiltonian cycle. We [2] proved this conjecture but here we present a simplified proof. The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We ...
متن کاملConnectivity of Matching Graph of Hypercube
The matching graph M(G) of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle. We prove that the matching graph M(Qd) of the d-dimensional hypercube is bipartite and connected for d ≥ 4. This proves Kreweras’ conjecture [2] that the graph Md is connected, where Md is obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010